Bionik: DFKI zeigt auf der CeBIT affenähnlichen Roboter mit biologisch inspirierten Bewegungsmustern

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Bionik: DFKI zeigt auf der CeBIT affenähnlichen Roboter mit biologisch inspirierten Bewegungsmustern

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
dfki_affenroboter

Welche Vorteile eine flexible Wirbelsäule und mit Sensoren ausgestattete Füße Robotern bieten, demonstriert das Robotics Innovation Center des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) auf der CeBIT in Hannover. Vom 10. bis 14. März in Halle 9, „Research & Innovation“, Messestand F43,  zeigt der affenähnliche Roboter „Charlie“ beim Balance-Akt auf einer Wippe, wie er abrupte, schaukelnde Bewegungen abfangen und ausgleichen kann. Auch beim Gang auf vier Beinen und beim Aufrichten wird deutlich: Das DFKI hat biologisch inspirierte Bewegungsmuster für eine neue Generation von Robotern erforscht – und liegt damit im internationalen Vergleich ganz vorn.

„iStruct – intelligent Structures for Mobile Robots“ heißt das Projekt, in dem DFKI-Wissenschaftler gemeinsam mit Forschern der Universität Bremen den Roboter entwickelt haben. Mensch und Schimpanse dienten als Vorbild. „Charlie“ soll sich sicher und flexibel in unebenem Gelände bewegen können, z. B. bei der Erkundung von Mondkratern auf der Suche nach Wassereis. Das Vorhaben wurde vom Bundeswirtschaftsministerium über die Raumfahrtagentur des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit 3,3 Mio. Euro in einer Laufzeit von drei Jahren gefördert.

Bislang sind rad- oder kettengetriebene robotische Fahrzeuge beim Einsatz auf fremden Planeten energieeffizienter und leichter zu kontrollieren. Laufende Robotersysteme bieten jedoch Zugang zu schwer zugänglichem Terrain. Mit ihren Beinen und Füßen können sie gezielt Kräfte auf bestimmte Punkte aufbringen, sich so – ohne das Gleichgewicht zu verlieren – fortbewegen und Kräfte optimal einsetzen und verteilen. Damit lässt sich beispielsweise ein steiler Mondkrater herabklettern. Darüber hinaus können die Gliedmaßen für tastende und greifende Aufgaben verwendet werden.

Die Wirbelsäule und die Füße mit sich an die Bodenstruktur anpassenden Sohlen haben das Potenzial, die Mobilität des Roboters im Vergleich zu klassischen Systemen zu verbessern. In einer vierbeinigen Pose hat er einen stabileren Stand, der sich beispielsweise zur Erkundung von unebenem und unstrukturiertem Gelände besser eignet. In der zweibeinigen Pose sind erweiterte Einsatzmöglichkeiten denkbar, wie zum Beispiel die Nutzung der vorderen Extremitäten für zusätzliche Aufgaben oder Tätigkeiten.

Ein interessanter Forschungsaspekt ist es, die Übertragbarkeit von Bewegungsmustern von Vier- auf Zweibeiner oder umgekehrt zu untersuchen. Dienen bestimmte Bewegungssequenzen aus der vierbeinigen Fortbewegung auch dem zweibeinigen Laufen in direkter oder abgewandelter Form? „Antworten darauf könnten Hinweise auf Prozesse geben, die in der Evolution des zweibeinigen Laufens stattgefunden haben“, sagt Prof. Dr. Frank Kirchner, Direktor des Robotics Innovation Center am DFKI und Leiter der Arbeitsgruppe Robotik der Universität Bremen. 

Im Detail: Wirbelsäule macht Roboter wendig

Viele Bewegungen von Robotern – besonders im Bereich der biologisch inspirierten Laufmaschinen – wirken trotz einer guten Einzelgelenkregelung schwerfällig und hölzern. Häufig liegt dies an einer starren Konstruktion, die mittig im Roboter angebracht ist und als Korpus dient. Abgehend davon sind in den Gliedmaßen die jeweiligen Antriebseinheiten aufgehängt. „Das vereinfacht zwar den Aufbau und reduziert die Komplexität des Roboters, aber es beschränkt die Bewegungsfreiheit und verringert die Möglichkeiten, den Kraftfluss im Roboter gezielt von den Hinterbeinen in eine Vorwärtsbewegung umzusetzen. Die flexible iStruct-Wirbelsäule erlaubt dagegen die Bewegung in sechs Raumrichtungen“, erklärt Projektleiter und DFKI-Forscher Daniel Kühn. Das hat zur Folge, dass auch neue Ansätze der Kraftfluss-Optimierung zur Steuerung des Roboters entwickelt werden müssen. Um die Funktionsweise der Wirbelsäule von komplexen biologischen Systemen wie Mensch oder Affe auf ein technisches System zu übertragen, analysierten die Forscher das Zusammenspiel von Knochen, Muskeln und Sehnen. Ein weiteres, essenzielles Subsystem des Roboters ist der Fuß, der für eine effektive Fortbewegung, gute Bodenhaftung und einen robusten Stand sorgt. Hierfür wurde der entwickelte Unterschenkel mit einem aktiven Sprunggelenk und einem adaptiven Sensorfuß ausgestattet.

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: Neue Konzepte für Brückeninspektionen Mehr Sicherheit mit Drohne und digitalem Zwilling

Neue Konzepte für Brückeninspektionen

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

    * Jederzeit kündbar

    Entdecken Sie weitere Magazine

    Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

    Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.