Granulares Aluminium für schnelle Rechner

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Granulares Aluminium für schnelle Rechner

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Wissenschaftlerinnen und Wissenschaftler am Karlsruher Institut für Technologie (KIT) haben granulares Aluminium, kurz grAl, für Quantenschaltungen eingesetzt und gezeigt, dass dieses supraleitende Material die bisherigen Grenzen der Quantencomputer überwinden helfen kann.

granulares_aluminium_fuer_die_computer_der_zukunft

Wissenschaftlerinnen und Wissenschaftler am Karlsruher Institut für Technologie (KIT) haben granulares Aluminium, kurz grAl, für Quantenschaltungen eingesetzt und gezeigt, dass dieses supraleitende Material die bisherigen Grenzen der Quantencomputer überwinden helfen kann.

Auf quantenmechanischen Prinzipien basierende Computer können bestimmte Aufgaben besonders effizient lösen. Ihre Informationsträger – die Qubits – verfügen nicht nur über die Werte „0“ und „1“, sondern auch über Zustände dazwischen. Einen solchen Zustand aufrechtzuerhalten, ist allerdings schwierig. Wissenschaftlerinnen und Wissenschaftler am Karlsruher Institut für Technologie (KIT) haben nun granulares Aluminium, kurz grAl, für Quantenschaltungen eingesetzt und gezeigt, dass dieses supraleitende Material großes Potenzial besitzt, die bisherigen Grenzen der Quantencomputer zu überwinden. Die Forscher berichten in der Zeitschrift Nature Materials. (DOI: 10.1038/s41563-019-0350-3)

Quantencomputer gelten als die Rechner der Zukunft. Sie können große Datenmengen unter bestimmten Voraussetzungen schneller verarbeiten als ihre klassischen Pendants. Während klassische Computer einen Rechenschritt nach dem anderen ausführen, nehmen Quantencomputer viele Rechenschritte parallel vor. Informationsträger des Quantencomputers ist das Quantenbit, kurz Qubit. Bei Qubits gibt es nicht nur die Informationen „0“ und „1“, sondern auch Werte dazwischen, die über die quantenmechanische Überlagerung von Zuständen realisiert werden, das ist das sogenannte Superpositionsprinzip. Ihre Verarbeitung geschieht nach quantenmechanischen Prinzipien wie beispielsweise der Verschränkung, die selbst für räumlich weit voneinander getrennte Teilchen eine Wechselbeziehung ohne zeitliche Verzögerung ermöglicht.

„Die Herstellung von Qubits, die klein genug sind und sich schnell genug schalten lassen, um Quantenkalkulationen auszuführen, stellt eine enorme Herausforderung dar“, erklärt der Physiker Dr. Ioan Pop, Leiter der Forschungsgruppe Kinetic Inductance Quantum Systems am Physikalischen Institut (PHI) und am Institut für Nanotechnologie (INT) des KIT. Als vielversprechende Option gelten supraleitende Schaltungen. Supraleiter sind Materialien, die bei extrem niedrigen Temperaturen keinen elektrischen Widerstand aufweisen und daher elektrischen Strom verlustfrei leiten. Dies ist entscheidend, um den Quantenzustand der Qubits zu erhalten und sie effizient miteinander zu verbinden. So arbeiten große Unternehmen wie IBM, Intel, Microsoft und Google bereits daran, supraleitende Quantenprozessoren hochzuskalieren.

Eine wesentliche Schwierigkeit besteht allerdings darin, den Quantenzustand aufrechtzuerhalten. Wechselwirkungen mit der Umgebung können zum Zerfall des Quantenzustands führen, der sogenannten Dekohärenz. Je mehr Qubits verwendet werden, desto schwieriger ist es, die Kohärenz zu bewahren. Forscherinnen und Forscher am PHI, am INT und am Institut für Prozessdatenverarbeitung und Elektronik (IPE) des KIT sowie an der Nationalen Universität für Forschung und Technologie MISIS in Moskau haben nun erstmals granulares Aluminium als supraleitendes Material für Quantenschaltungen mit hoher Kohärenz eingesetzt. Wie das Team in der Zeitschrift Nature Materials berichtet, hat es ein sogenanntes Fluxonium-Qubit mit granularem Aluminium hergestellt, mit einer Kohärenzzeit von bis zu 30 Mikrosekunden – das ist die Zeit, in der sich ein Qubit in einem Zustand zwischen „0“ und „1“ befinden kann. Obwohl die gemessene Zeit sehr kurz erscheint, können innerhalb dieser Zeitspanne mehr als tausend logische Operationen durchgeführt werden. „Unsere Ergebnisse zeigen, dass granulares Aluminium eine neue Klasse von komplexen Qubit-Designs erschließen und dazu beitragen kann, die derzeitigen Grenzen der Quanteninformationsverarbeitung zu überwinden“, erklärt Ioan Pop.

Originalpublikation:

Lukas Grünhaupt, Martin Spiecker, Daria Gusenkova, Nataliya Maleeva, Sebastian T. Skacel, Ivan Takmakov, Francesco Valenti, Patrick Winkel, Hannes Rotzinger, Wolfgang Wernsdorfer, Alexey V. Ustinov and Ioan M. Pop: Granular aluminium as a superconducting material for high-impedance quantum circuits. Nature Materials, 2019. DOI: 10.1038/s41563-019-0350-3

Abstract unter https://www.nature.com/articles/s41563-019-0350-3

Bild: Das Fluxonium-Qubit mit granularem Aluminium kann sich bis zu 30 Mikrosekunden in einem Zustand zwischen „0“ und „1“ befinden. (Abbildung: Dr. Ioan Pop, KIT)

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Mit der standardisierten Datenschnittstelle REXS entfällt die mehrfache Modellierung von Getrieben. So werden Entwicklungszeiten enorm reduziert und die Basis zum Generieren von Digital Twins geschaffen, die zum Beispiel zur Analyse von Betriebsdaten im Rahmen von Industrie 4.0-Lösungen genutzt werden können.

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: Fabrikplanung mit Augmented Reality

Zukunftstechnologie in der täglichen Arbeit

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

* Jederzeit kündbar

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.