Steuerungstechnik: TU Berlin entwickelt System zur Flugzeugsteuerung

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Steuerungstechnik: TU Berlin entwickelt System zur Flugzeugsteuerung

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
kw13_tu_berlin_motorsegler

Die erste automatische Landung des Arbeitsflugzeugs STEMME S15 – LAPAZ erfolgte am 22. März 2012 auf dem Flugplatz Neuhardenberg. Ein Meilenstein im Forschungsprojekt LAPAZ an der TU Berlin ist erreicht. Das Flugsteuerungssystem leitete den Motorsegler präzise und sicher um 17.44 Uhr auf die Landebahn. Mit Hilfe eines Satellitennavigationssystems wurde die genaue Flugzeug-Position und mit einem Laserhöhenmesser der Abstand zum Grund ermittelt. So kann das Flugzeug auf jedem Flugplatz landen, ohne dass ein teures Instrumentenlandesystem installiert sein muss. Die Erprobung wird in den nächsten Tagen auf weiteren Flugplätzen fortgesetzt.

Der Testpilot brachte das mit rund einer Tonne Gewicht recht leichte Flugzeug in die Luft, aktivierte den Flugregler und überwachte den Flug im steten Funkkontakt zu den Versuchsingenieuren am Boden. Es war die erste automatische Landung eines zivilen Hochleistungs-Motorseglers, der mit einem integeren, äußerst zuverlässigen Flugsteuerungssystem ausgestattet ist. Möglich wurde diese Leistung durch die Arbeit des 6- bis 8-köpfigen Ingenieur-Teams der drei Partner TU Berlin, STEMME AG und Universität Stuttgart und dank der technologischen Fortschritte der vergangenen Jahre: Die Entwicklung von sicherheitskritischer Flugregelungssoftware wurde effizienter und elektronische Bauteile wurden sehr viel kleiner und für diesen Zweck nutzbar.

LAPAZ beweist, dass solche komplexen Regelungssysteme nicht mehr auf kommerzielle Verkehrsflugzeuge beschränkt sein müssen. Das System nutzt durch EGNOS (European Geostationary Navigation Overlay Service) verbesserte Satelli-tendaten mit einer Positionsgenauigkeit im Meterbereich für den automatischen Flug vom Start bis zur Landung. Es ist modular aufgebaut, fehlertolerant und skalierbar, so dass es an neuartige Aufgaben leicht angepasst werden kann. Das Flugzeug soll in späteren Ausbaustufen auch unbemannt betrieben werden.

Die Arbeit der Ingenieure geht weiter. Die Versuchsdaten müssen als nächstes genau analysiert werden. Zu den nächsten Entwicklungszielen gehört, den Flugregler so robust zu konstruieren, dass die automatische Landung auch bei schwierigen Wetterbedingungen wie beispielweise Turbulenzen und Seitenwind sicher erfolgt, danach der automatische Start und außerdem die Luftkräfte, die durch Turbulenz erzeugt werden, so abzumindern, dass sie Messungen mit empfindlichen Instrumenten nicht stören („Böenlastminderung“).

Der „Hardware-in-the-Loop“ Flugsimulator (HIL-Simulator), den die TU-Mitarbeiter für die STEMME S15 entwickelt haben, soll weiter zum Testen des Flugreglers am Boden benutzt werden. Er besteht aus einem Simulationsrechner, der die Flugbewegung mit einem genauen flugmechanischen Modell der STEMME S15 berechnet, und einem Sichtsystem, das die Bewegung aus Sicht des Piloten visualisiert. Er wird direkt an das automatische Flugsteuerungssystem, das im Flugzeug integriert ist, angekoppelt und ermöglicht so, neue Flugreglerversionen auf der Original-Hardware des LAPAZ-Demonstrators im geschlossenen Regelkreis („closed loop“) bereits am Boden realitätsnah zu testen. Flugversuche und Flugmissionen können so vorab simuliert werden. Seit Anfang März ist der HIL-Simulator in Strausberg im Einsatz und sorgt so dafür, dass der Zeitraum, der zum Testen neuer Flugregler nötig ist, erheblich reduziert wird.

Beim LAPAZ-Projekt handelt es sich um eine Kooperation der STEMME AG, Prof. Dr.-Ing. Robert Luckner und seiner Forschergruppe am Fachgebiet für Flugmechanik, Flugregelung und Aeroelastizität an der TU Berlin und Prof. Reinhard Reichel am Instituts für Luftfahrtsysteme an der Universität Stuttgart. Die Forschung wird vom Bundesministerium für Wirtschaft und Technologie gefördert.

Bild: Motorsegler mit automatischem Flugsteuerungssystem. Quelle: TU Berlin

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Das Schüco Technologiezentrum in Bielefeld hat eine neue Prüfanlage: Mit der „Eisprinzessin“ können jetzt erstmalig Widerstandsprüfungen an Fenstern, Türen und Fassaden im gesamten Temperaturbereich zwischen -20 °C und +90 °C durchgeführt werden – und das bei Winddrücken, die bis zu 450 Stundenkilometer Windgeschwindigkeiten simulieren.

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: Neue Konzepte für Brückeninspektionen Mehr Sicherheit mit Drohne und digitalem Zwilling

Neue Konzepte für Brückeninspektionen

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

    * Jederzeit kündbar

    Entdecken Sie weitere Magazine

    Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

    Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.