Werkstoffe: Industrie 4.0 auf atomarer Ebene

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Schwachstellen oder Defekte in Werkstoffen sind oft von außen kaum zu erkennen und können unerkannt zum kostspieligen Ausfall industrieller Komponenten oder Anlagen führen. Durch ein enges Zusammenspiel theoretischer und experimenteller Ansätze entwickelt Prof. Jochen M. Schneider in der neuen Arbeitsgruppe am MPIE so genannte Self Reporting Materials („Kommunizierende“ Materialien).
mpie_synthesetechnik_physrevlett_03

Materialien „kommunizieren“ selbst: Prof. Jochen M. Schneider, Inhaber des Lehrstuhls für Werkstoffchemie der RWTH Aachen, ist zum Max-Planck-Fellow am Max-Planck-Institut für Eisenforschung (MPIE) in Düsseldorf berufen worden. Der Wissenschaftler leitet ab Oktober eine Arbeitsgruppe zum Thema Self Reporting Materials („Kommunizierende“ Materialien).

Schwachstellen oder Defekte in Werkstoffen sind oft von außen kaum zu erkennen und können unerkannt zum kostspieligen Ausfall industrieller Komponenten oder Anlagen führen. Durch ein enges Zusammenspiel theoretischer und experimenteller Ansätze entwickelt Schneider in der neuen Arbeitsgruppe am MPIE sogenannte Self Reporting Materials („Kommunizierende“ Materialien). Solche Werkstoffe melden Schäden oder Einschränkungen ihrer Leistungsfähigkeit durch Änderungen ihrer Eigenschaften. Diese Eigenschaftsänderungen werden durch Änderungen der chemischen Zusammensetzung auf atomarer Ebene und/oder Strukturänderungen hervorgerufen. Gleichzeitig können sie während des Betriebs in ingenieurtechnischen Anwendungen gemessen werden und erlauben somit eine Schadensbeurteilung und -kontrolle der Bauteile bereits während ihres Einsatzes. In einem ersten Schritt wird die Arbeitsgruppe Werkstoffe mit einer bestimmten Ladungsdichteverteilung herstellen und ihre elastischen und plastischen Eigenschaften sowie ihre chemische und thermische Stabilität untersuchen. Auf der Grundlage dieser Untersuchungen und weiterer quantenmechanischer Berechnungen werden durch Substitution und Addition von Elementen „kommunizierende“ Werkstoffe entwickelt. Die Realisierung dieses Konzeptes würde Industrie 4.0 auf atomarer Skala ermöglichen.

Prof. Jochen M. Schneider, Jahrgang 1969, studierte Ingenieurswissenschaften in Deutschland, England und den USA und wurde 1998 promoviert. Bis 2002 war er unter anderem Gastwissenschaftler am Lawrence Berkeley National Laboratory in Berkeley, Kalifornien (USA) und Assistenzprofessor und Dozent an der Linköping Universität in Schweden. Seit 2002 ist er Professor am Lehrstuhl für Werkstoffchemie der RWTH Aachen. Sein Forschungsschwerpunkt ist das quantenmechanisch geführte Werkstoffdesign. Er wurde 2001 vom Präsidenten der Alexander von Humboldt-Stiftung mit dem Sofja Kovalevskaja-Preis in Würdigung herausragender Leistungen in der Forschung ausgezeichnet. 2013 wurde Schneider zum Fellow der American Vacuum Society (AVS) ernannt.

Die Max-Planck-Gesellschaft beruft herausragende Hochschullehrende zu Max-Planck-Fellows und gibt ihnen die Möglichkeit, zunächst für fünf Jahre, eine Max-Planck-Arbeitsgruppe zu leiten. Zudem verstärkt das MPIE mit der Berufung seine Zusammenarbeit mit der RWTH Aachen.

Am MPIE wird moderne Materialforschung auf dem Gebiet von Eisen, Stahl und verwandten Werkstoffen betrieben. Ein Ziel der Untersuchungen ist ein verbessertes Verständnis der komplexen physikalischen Prozesse und chemischen Reaktionen dieser Werkstoffe. Außerdem werden neue Hochleistungswerkstoffe mit ausgezeichneten physikalischen und mechanischen Eigenschaften für den Einsatz als high-tech Struktur- und Funktionsbauteile entwickelt. Auf diese Weise verbinden sich erkenntnisorientierte Grundlagenforschung  mit innovativen, anwendungsrelevanten Entwicklungen und Prozesstechnologien. Das MPIE wird zu gleichen Teilen von der Max-Planck-Gesellschaft und dem Stahlinstitut VDEh finanziert.

Bild:  Darstellungen der Synthesetechnik, die von der Fellow-Gruppe eingesetzt wird (rechts), sowie von der dreidimensionalen chemischen Analyse eines solchen Materials (links) aus gemeinsamen Vorarbeiten mit dem Max-Planck-Institut für Eisenforschung. Copyright: Phys. Rev. Lett. 113, 069903 (2014)

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

avatar
  Abonnieren  
Benachrichtige mich bei

Andere Leser haben sich auch für die folgenden Artikel interessiert

Aktive, intelligente und adaptive – kurz: smarte – Strukturen und Systeme standen im Fokus des neu geschaffenen Symposiums 4Smarts, das Anfang April 2016 im Maschinenhaus der TU Darmstadt Premiere feierte. Das Motto dabei: „Innovation durch fokussierte Vernetzung von Forschung und Anwendung“. Entsprechend deckte das Symposium mit zahlreichen Beiträgen aus Forschung und Anwendung alle relevanten Technologiefelder ab.

Auf dem NEST-Gebäude der Empa und Eawag in Dübendorf, Schweiz, wird das DFAB HOUSE offiziell eröffnet. Es ist das weltweit erste bewohnte Haus, das nicht nur digital geplant, sondern – mit Robotern und 3D-Druckern – auch weitgehend digital gebaut wurde. Die eingesetzten Bautechnologien entwickelten Forschende der ETH Zürich in Zusammenarbeit mit Industriepartnern.

Mit einem neuen Online-Konfigurator für Profilschienen erweitert Rexroth die digitale Tool-Kette für Lineartechnikkomponenten und -systeme. Die Software führt Anwender durch die Konfiguration von Kugel-, Rollen-, Miniatur- und Laufrollenschienen des Standardprogramms. Anwender können die Kugel- und Rollenschienen zusätzlich mit dem integriertem Messsystem IMS konfigurieren.

Werbung

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.