Werkstoffe: Stahlharte Mathematik

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Werkstoffe: Stahlharte Mathematik

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
Stahl ist immer hart? Stimmt nicht ganz. Damit das Material nicht spröde wird und somit leicht bricht, muss es im Inneren oft weicher sein. Das erfordert hohe Präzision bei der Herstellung. Weil sich aber der eigentliche Prozess der Stahlherstellung im Material nicht beobachten lässt, liefert die Mathematik Modelle und Simulationen, um den Prozess optimal zu steuern.
iwtbremen264941

Stahl ist immer hart? Stimmt nicht ganz. Damit das Material nicht spröde wird und somit leicht bricht, muss es im Inneren oft weicher sein. Das erfordert hohe Präzision bei der Herstellung. Weil sich aber der eigentliche Prozess der Stahlherstellung im Material nicht beobachten lässt, liefert die Mathematik Modelle und Simulationen, um den Prozess optimal zu steuern.

Am Weierstraß-Institut startet nun das europäische Doktorandenprogramm MIMESIS (Mathematics and Materials Science for Steel Production and Manufacturing), in dem Nachwuchswissenschaftler in enger Kooperation mit der Industrie neue Methoden zur Stahlherstellung und -bearbeitung entwickeln. Projektleiter Prof. Dietmar Hömberg vom Weierstraß-Institut sagt: „Wir verbinden in dem Projekt die Disziplinen Mathematik und Materialwissenschaft, verschiedene Länder sowie Wissenschaft und Wirtschaft. Die Qualifikation, die die jungen Leute dabei erlangen, sind auf dem Arbeitsmarkt sehr gefragt.“

Die physikalischen Eigenschaften von Stahl lassen sich durch Phasenübergänge gezielt steuern. So wird das Material besonders hart, wenn es zunächst erhitzt und anschließend schnell abgekühlt wird. Das ist zum Beispiel am Rand eines Zahnrads erwünscht, das Innere soll jedoch weicher bleiben, damit es länger hält. Beim induktiven Erwärmen des Materials werden verschiedene Frequenzen des Stroms gleichzeitig angelegt: Die hohe Frequenz greift nur den Zahnkopf an, die mittlere Frequenz den Zahnfuß. Sehr viele Parameter spielen gleichzeitig eine Rolle. Um diesen Prozess technisch zu beherrschen, müssen die Wissenschaftler ihn im Computer simulieren. Für das Verständnis braucht man zum einen die Materialwissenschaft, um die Vorgänge im Inneren des Stahls zu verstehen, und zum anderen die Mathematik zur Optimierung.

Das Herstellen von Stahl gleicht überdimensionalem Kochen: Das Material wird in einer Gießpfanne eingeschmolzen und von unten mit Gas angeblasen. Das führt zu Verwirbelungen (es wird gerührt), und das Material wird mit verschiedenen Elementen legiert (gewürzt). Da dies ein sehr aufwendiger Prozess ist und man nicht immer zwischendurch probieren kann, um zu testen, ob die gewünschte chemische Zusammensetzung erreicht ist, wollen die Forscher in dem Projekt die Strömungsvorgänge in der Gießpfanne mit mathematischen Methoden simulieren.

Auch die Art des Rührens wirkt sich auf das Ergebnis aus und soll daher optimal gesteuert werden. Auf der Oberfläche bildet sich dabei ein sogenanntes “Open Eye“, das heißt, eine Schlackenschicht, die sich beim Rühren in der Mitte öffnet. Von dessen Größe können die Mathematiker auf die Strömungsgeschwindigkeit zurückschließen. Auch außen an der Gießpfanne gemessene Vibrationen lassen einen Rückschluss auf die Strömung zu. Dazu lösen die Mathematiker sogenannte inverse Probleme.

Das Doktorandenprogramm MIMESIS mit einer Fördersumme von 2,1 Millionen Euro fördert Mobilität in verschiedenen Ebenen: Im Rahmen der European Industrial Doctorate Förderlinie der Marie-Sklodowska-Curie-Maßnahmen der EU stellen die Partner jeweils Stipendiaten ein, die in den letzten drei Jahren maximal ein Jahr im jeweiligen Sitzland des Partners gelebt haben. Die Nachwuchswissenschaftler werden mindestens die Hälfte ihrer Promotionszeit bei einem Industriepartner verbringen, was die intersektorale Mobilität unterstützt. Und nicht zuletzt ist das Projekt interdisziplinär angelegt: Je vier der Doktorandenstellen sind für Mathematiker und Materialwissenschaftler ausgeschrieben.

Neben dem WIAS ist die finnische Universität Oulu wissenschaftlicher Partner, die Industriepartner sind Firmen aus Norwegen, Schweden und Finnland. „Solch intensive Industriekontakte kommen natürlich auch unserem ganzen Institut zugute“, betont Hömberg. Er ergänzt: „Die Verbindung von mathematischen Modellen und deren Umsetzung für reale Probleme wollten wir mit der Wahl des Akronyms zum Ausdruck bringen: MIMESIS bezieht sich auf die modellhafte Abbildung der Wirklichkeit.“

 

Bild: Ziel der Wärmebehandlung von Stahl ist es, Werkstücke mit harter, verschleißfester Oberfläche und weichem, zähem Kern zu erzeugen.
Foto: IWT Bremen

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: Antriebskomponenten optimal berechnen und simulieren

Berechnungsprogramm KISSsoft 2020

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

* Jederzeit kündbar

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.