Werkstoffe: Was passiert in Stahl unter Belastung?

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
helmholtz_berlin_stahl

Rostfreier Stahl wird überall eingesetzt und muss stellenweise höchsten Belastungen standhalten. Um abzuschätzen, wann das Material „ermüden“ könnte oder um zum Beispiel industrielle Umformungsprozesse zu charakterisieren, muss man wissen, wo Belastungen Phasenumwandlungen auslösen, die das Gefüge verändern.

Nun haben Forscher am HZB und an der University of Tennessee Knoxville (UTK) eine neue Methode der Bildgebung mit Neutronen entwickelt, die deutlich genauere Einblicke ermöglicht: Sie können die Verteilung der kristallinen Phasen innerhalb der Probe mit hoher räumlicher Genauigkeit kartieren. Zuvor konnten solche Verteilungen nur an der Probenoberfläche oder innerhalb sehr kleiner Proben ermittelt werden. Die Ergebnisse veröffentlichten die Forscher in dem angesehenen Fachjournal „Advanced Materials“, das die Abbildungen sogar auf dem Titelblatt zeigt.

Für viele praktische Anwendungen ist es entscheidend, die Qualität des Materials nicht nur an einzelnen Stellen, sondern insgesamt genau zu charakterisieren. Zum Beispiel, um Strukturveränderungen oder andere sicherheitsrelevante Mängel zu identifizieren.

„Gemeinsam mit den Kollegen vom HZB haben wir dies an Proben aus TRIP-Stahl demonstriert, in denen wir durch Torsion oder Zug gezielt Phasenübergänge ausgelöst haben“, erklärt Prof. Dayakar Penumadu von der University of Tennessee Knoxville (UTK); Er und sein Doktorand Robin Woracek haben mit den HZB-Forschern Ingo Manke, Nikolay Kardjilov und André Hilger vom HZB-Institut für Angewandte Materialforschung das neue bildgebende Verfahren entwickelt: Dafür haben sie den Kontrast für Bragg-Streuung im polykristallinen Material deutlich verbessert, so dass sie deutlich präzisere Daten gewinnen konnten. Da die Messmethode Neutronen mit ausgewählten Wellenlängen nutzt, könnte sie auch an Spallationsquellen eingesetzt werden. Die Untersuchungen wurden an der CONRAD-Beamline des Berliner Forschungsreaktors BER II durchgeführt.

Die Forscher untersuchten Proben aus Stahl mit Durchmessern von 8 Millimetern, die anfangs hauptsächlich aus Austenit-Kristalliten (kubisch flächenzentriert) bestanden. Einige Proben wurden dann im Zugversuch plastisch verformt (zu erkennen an der Einschnürung) und andere im Torsionsversuch plastisch verdreht. Bei den Zugproben wandelten sich in der verengten Region in der Mitte, welche die höchste Verformung aufweist, die meisten Kristallite von Austenit in Martensit um (kubisch raumzentrierte Kristallform). Bei den Torsionsproben hingegen nimmt die Spannung von der Mitte zum äußeren Radius hin zu. Entsprechend war auch die Umwandlung von Austenit-Kristalliten in Martensit-Kristallite an der Oberfläche am größten, zeigten die Messungen an CONRAD. Diese quantitativen Ergebnisse stimmten hervorragend mit den Stichprobenuntersuchungen am Messinstrument E3 (Eigenspannungsanalyse, in Kooperation mit Mirko Boin) überein.

Rostfreie Stähle werden in vielen Bereichen eingesetzt, in Autos, Flugzeugteilen, Haushaltsgeräten und Gebäuden. Die neue Charakterisierungsmethode kann Unregelmäßigkeiten im Probenvolumen aufdecken, die mit keiner anderen Technik detektierbar wären. Dabei ist sie auch auf andere Materialien anwendbar, um Materialeigenschaften oder Herstellungsprozesse zu optimieren. Experten erwarten, dass sich damit zum Beispiel die Entwicklung von superelastischen Legierungen und Formgedächtnis-Legierungen verbessern lässt, die auch für die Medizintechnik wichtig sind.

Die Forschungsergebnisse sind im Fachjournal „Advanced Materials“ veröffentlicht, schon das Cover weist auf die Arbeit hin. „Advanced Materials“ ist mit einem Impaktfaktor von 15.4 eines der am meisten zitierten Journale im Bereich der Materialforschung.

Original publication: Woracek, R., Penumadu, D., Kardjilov, N., Hilger, A., Boin, M., Banhart, J. and Manke, I. (2014), “3D Mapping of Crystallographic Phase Distribution using Energy-Selective Neutron Tomography”. Adv. Mater., 26: 4069–4073. doi: 10.1002/adma.201400192 (2014)

Bild: Die Neutronentomografie zeigt, wie sich die beiden unterschiedlichen kristallinen Phasen Austenit und Martensit in der Stahlprobe verteilen. Links ist die Probe nach Torsion gezeigt. Rechts nach Zugspannung. Foto:  HZB/Wiley VCH

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

avatar
  Abonnieren  
Benachrichtige mich bei

Andere Leser haben sich auch für die folgenden Artikel interessiert

Zusammen mit dem Fraunhofer-Institut für Angewandte Optik und Feinmechanik, TEMICON und Continental arbeitet Osram Opto Semiconductors seit Oktober 2017 an der Entwicklung sehr kompakter und flacher optischer Bauteile zur Datenvisualisierung oder zur Beleuchtung. Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Projekt IBELIVE hat das Ziel, universell einsetzbare Verfahren für bauraumkritische Anwendungen zu erarbeiten. 

Werbung

Entdecken Sie weitere Magazine

Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.